Convergence Analysis of Inexact Infeasible Interior Point Method for Linear Optimization
نویسندگان
چکیده
In this paper we present the convergence analysis of the inexact infeasible path-following (IIPF) interior point algorithm. In this algorithm the preconditioned conjugate gradient method is used to solve the reduced KKT system (the augmented system). The augmented system is preconditioned by using a block triangular matrix. The KKT system is solved approximately. Therefore, it becomes necessary to study the convergence of interior point method for this specific inexact case. We present the convergence analysis of the inexact infeasible path-following (IIPF) algorithm, prove the global convergence of this method and provide complexity analysis.
منابع مشابه
Convergence Analysis of the Inexact Infeasible Interior-Point Method for Linear Optimization
We present the convergence analysis of the inexact infeasible pathfollowing (IIPF) interior-point algorithm. In this algorithm, the preconditioned conjugate gradient method is used to solve the reduced KKT system (the augmented system). The augmented system is preconditioned by using a block triangular matrix. The KKT system is solved approximately. Therefore, it becomes necessary to study the ...
متن کاملConvergence Analysis of an Inexact Infeasible Interior Point Method for Semidefinite Programming
In this paper we present an extension to SDP of the well known infeasible Interior Point method for linear programming of Kojima, Megiddo and Mizuno (A primal-dual infeasibleinterior-point algorithm for Linear Programming, Math. Progr., 1993). The extension developed here allows the use of inexact search directions; i.e., the linear systems defining the search directions can be solved with an a...
متن کاملConvergence Analysis of an Inexact Infeasible Interior
In this paper we present an extension to SDP of the well known infeasible Interior Point method for linear programming of Kojima, Megiddo and Mizuno (A primal-dual infeasibleinterior-point algorithm for Linear Programming, Math. Progr., 1993). The extension developed here allows the use of inexact search directions; i.e., the linear systems defining the search directions can be solved with an a...
متن کاملAn infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کاملA Full-NT Step Infeasible Interior-Point Algorithm for Mixed Symmetric Cone LCPs
An infeasible interior-point algorithm for mixed symmetric cone linear complementarity problems is proposed. Using the machinery of Euclidean Jordan algebras and Nesterov-Todd search direction, the convergence analysis of the algorithm is shown and proved. Moreover, we obtain a polynomial time complexity bound which matches the currently best known iteration bound for infeasible interior-point ...
متن کامل